Векторное пространство - definitie. Wat is Векторное пространство
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is Векторное пространство - definitie

ОСНОВНОЕ ПОНЯТИЕ ЛИНЕЙНОЙ АЛГЕБРЫ, ПРОСТРАНСТВО НАД ПОЛЕМ
Линейная оболочка; Линейное подпространство; Вектор (алгебра); Размерность линейного пространства; Линейное пространство; Векторное подпространство; Векторное пространство над полем; Линейные комбинации; Линейные пространства

Векторное пространство         

математическое понятие, обобщающее понятие совокупности всех (свободных) Векторов обычного трёхмерного пространства.

Определение В. п. Для векторов трёхмерного пространства указаны правила сложения векторов и умножения их на действительные числа (см. Векторное исчисление). В применении к любым векторам х, у, z и любым числам α, β эти правила удовлетворяют следующим условиям (условия А):

1) х + у = у + х (перестановочность сложения);

2) (х + у) + z = x + (y + z) (ассоциативность сложения);

3) имеется нулевой вектор 0 (или нуль-вектор), удовлетворяющий условию x + 0 = x: для любого вектора x;

4) для любого вектора х существует противоположный ему вектор у такой, что х + у = 0,

5) 1 · х = х,

6) α(βx) = (αβ) х (ассоциативность умножения);

7) (α + β) х = αх + βх (распределительное свойство относительно числового множителя);

8) α(х + у) = αх + αу (распределительное свойство относительно векторного множителя).

Векторным (или линейным) пространством называется множество R, состоящее из элементов любой природы (называемых векторами), в котором определены операции сложения элементов и умножения элементов на действительные числа, удовлетворяющие условиям А (условия 1-3 выражают, что операция сложения, определённая в В. п., превращает его в коммутативную группу). Выражение

?1e1 + ?2e2 + ... + αnen (1)

называется линейной комбинацией векторов e1, e2,..., en с коэффициентами α1, α2,..., αn. Линейная комбинация (1) называется нетривиальной, если хотя бы один из коэффициентов α1, α2,..., αn отличен от нуля. Векторы e1, e2,..., en называются линейно зависимыми, если существует нетривиальная комбинация (1), представляющая собой нулевой вектор. В противном случае (то есть если только тривиальная комбинация векторов e1, e2,..., en равна нулевому вектору) векторы e1, e2,..., en называется линейно независимыми.

Векторы (свободные) трёхмерного пространства удовлетворяют следующему условию (условие В): существуют три линейно независимых вектора; любые четыре вектора линейно зависимы (любые три ненулевых вектора, не лежащие в одной плоскости, являются линейно независимыми).

В. п. называется n-мepным (или имеет "размерность n"), если в нём существуют n линейно независимых элементов e1, e2,..., en, а любые n + 1 элементов линейно зависимы (обобщённое условие В). В. п. называются бесконечномерным, если в нём для любого натурального n существует n линейно независимых векторов. Любые n линейно независимых векторов n-мepного В. п. образуют базис этого пространства. Если e1, e2,..., en - базис В. п., то любой вектор х этого пространства может быть представлен единственным образом в виде линейной комбинации базисных векторов:

x = α1e1 + α2e2 +... + αnen.

При этом числа α1, α2,..., αn называются координатами вектора х в данном базисе.

Примеры В. п. Множество всех векторов трёхмерного пространства образует, очевидно, В. п. Более сложным примером может служить так называемое n-мерное арифметическое пространство. Векторами этого пространства являются упорядоченные системы из n действительных чисел: λ 1, λ 2,..., λ n. Сумма двух векторов и произведение на число определяются соотношениями:

(?1, ?2, ..., ?n) + (?1, ?2, ..., ?n) = (?1 + ?1, ?2 + ?2, ..., λn + μn);

?(?1, ?2, ..., ?n) = (??1, ??2, ..., αλn).

Базисом в этом пространстве может служить, например, следующая система из n векторов e1 = (1, 0,..., 0), e2 = (0, 1,..., 0),..., en = (0, 0,..., 1).

Множество R всех многочленов α0 + ?1u + ... + αnun (любых степеней n) от одного переменного с действительными коэффициентами α0, α1,..., αn с обычными алгебраическими правилами сложения многочленов и умножения многочленов на действительные числа образует В. п. Многочлены 1, u, u2,..., un (при любом n) линейно независимы в R, поэтому R - бесконечномерное В. п.

Многочлены степени не выше n образуют В. п. размерности n + 1; его базисом могут служить многочлены 1, u, u2,..., un.

Подпространства В. п. В. п. R' называется подпространством R, если R' ⊆ R (то есть каждый вектор пространства R' есть и вектор пространства R) и если для каждого вектора v ∈ r' и для каждых двух векторов v1 и v2 (v1, v2 ∈ R') вектор λv (при любом λ) и вектор v1 + v2 один и тот же независимо от того, рассматриваются ли векторы v, v1, v2 как элементы пространства R' или R. Линейнîé îáîëî÷êîé âåêòîðîâ x1, x2,... xp íàçûâàåòñÿ ìíîæåñòâî âñåâîçìîæíûõ ëèíåéíûõ êîìáèíàöèé ýòèõ âåêòîðîâ, òî åñòü âåêòîðîâ âèäà ?1x1 + ?2x2 + ... + αpxp. В трёхмерном пространстве линейной оболочкой одного ненулевого вектора x1 будет, очевидно, совокупность всех векторов, лежащих на прямой, определяемой вектором x1. Линейной оболочкой двух не лежащих на одной прямой векторов x1 и x2 будет совокупность всех векторов, расположенных в плоскости, которую определяют векторы x1 и x2. В общем случае произвольного В. п. R линейная оболочка векторов x1, x2,..., xp этого пространства представляет собой подпространство пространства R размерности р. В n-мерном В. п. существуют подпространства всех размерностей, меньших р. Всякое конечномерное (данной размерности k) подпространство R' В. п. R есть линейная оболочка любых k линейно независимых векторов, лежащих в R'. Пространство, состоящее из всех многочленов степени ≤ n (линейная оболочка многочленов 1, u, u2,..., un), есть (n + 1)-мepное подпространство пространства R всех многочленов.

Евклидовы пространства. Для развития геометрических методов в теории В. п. нужно указать пути обобщения таких понятий, как длина вектора, угол между векторами и т.п. Один из возможных путей заключается в том, что любым двум векторам х и у из R ставится в соответствие число, обозначаемое (х, у) и называемое скалярным произведением векторов х и у. При этом требуется, чтобы выполнялись следующие аксиомы скалярного произведения:

1) (х, у) = (у, х) (перестановочность);

2) (x1 + x2, y) = (x1, y) + (x2, y) (распределительное свойство);

3) (αx, у) = α(х, у),

4) (х, х) ≥ 0 для любого х, причем (х, х) = 0 только для х = 0.

Обычное скалярное произведение в трёхмерном пространстве этим аксиомам удовлетворяет. В. п., в котором определено скалярное произведение, удовлетворяющее перечисленным аксиомам, называется евклидовым пространством; оно может быть как конечномерным (n-мерным), так и бесконечномерным. Бесконечномерное евклидово пространство обычно называют гильбертовым пространством (См. Гильбертово пространство). Длина |x| вектора x и угол между векторами х и у евклидова пространства определяются через скалярное произведение формулами

Примером евклидова пространства может служить обычное трёхмерное пространство со скалярным произведением, определяемым в векторном исчислении. Евклидово n-мepное (арифметическое) пространство En получим, определяя в n-ìepíîì àðèôìåòè÷åñêîì Â. ï. ñêàëÿðíîå ïðîèçâåäåíèå âåêòîðîâ x = (?1, ..., ?n) è y = (?1, ..., μn) соотношением

(x, y) = λ1μ1 + ?2?2 +... + λnμn. (2)

При этом требования 1)-4), очевидно, выполняются.

В евклидовых пространствах вводится понятие ортогональных (перпендикулярных) векторов. Именно векторы х и у называются ортогональными, если их скалярное произведение равно нулю: (х, у) = 0. В рассмотренном пространстве En условие ортогональности векторов x = (λ1, ..., ?n) è y = (?1, ..., μn), как это следует из соотношения (2), имеет вид:

?1?1 + ?2?2 +... + λnμn = 0. (3)

Применение В. п. Понятие В. п. (и различные обобщения) широко применяется в математике и её приложениях к естествознанию. Пусть, например, R - множество всех решений линейного îäíîðîäíîãî äèôôåðåíöèàëüíîãî óðàâíåíèÿ yn + a1(x) y (n + 1) + ... + an (x) y = 0. Ясно, что сумма двух решений и произведение решения на число являются решениями этого уравнения. Таким образом, R удовлетворяет условиям А. Доказывается, что для R выполнено обобщённое условие В. Следовательно, R является В. п. Любой базис в рассмотренном В. п. называется фундаментальной системой решений, знание которой позволяет найти все решения рассматриваемого уравнения. Понятие евклидова пространства позволяет полностью геометризовать теорию систем однородных линейных уравнений:

Ðàññìîòðèì â åâêëèäîâîì ïðîñòðàíñòâå En âåêòîðû ai = (?i1, ?i2, ..., αin), i = 1, 2,..., n и вектор-решение u = (u1, u2,..., un). Пользуясь формулой (2) для скалярного произведения векторов En, придадим системе (4) следующий вид:

(ai, u) = 0, i = 1, 2, ..., m. (5)

Из соотношений (5) и формулы (3) следует, что вектор-решение u ортогонален всем векторам ai. Иными словами, этот вектор ортогонален линейной оболочке векторов ai, то есть решение u есть любой вектор из ортогонального дополнения линейной оболочки векторов ai. Важную роль в математике и физике играют и бесконечномерные линейные пространства (См. Линейное пространство). Примером такого пространства может служить пространство С непрерывных функций на отрезке с обычной операцией сложения и умножения на действительные числа. Упомянутое выше пространство всех многочленов является подпространством пространства С.

Лит.: Александров П. С., Лекции по аналитической геометрии, М., 1968; Гельфанд И, М., Лекции по линейной алгебре, М. - Л., 1948.

Э. Г. Позняк.

ВЕКТОРНОЕ ПРОСТРАНСТВО         
математическое понятие, обобщающее понятие совокупности всех векторов 3-мерного пространства на случай произвольного числа измерений.
Векторное пространство         
Ве́кторное простра́нство (лине́йное пространство) — математическая структура, представляющая собой набор элементов, называемых векторами, для которых определены операции сложения друг с другом и умножения на число — скалярНе следует путать понятия «умножение на скаляр» и «скалярное произведение».. Эти операции подчинены восьми аксиомам. Скаляры могут быть элементами вещественного, комплексного или любого другого поля чисел. Частным случаем подобного пространства является обычное трёхмерное евклидово пространство, векторы которого используютс

Wikipedia

Векторное пространство

Ве́кторное простра́нство (лине́йное пространство) — математическая структура, представляющая собой набор элементов, называемых векторами, для которых определены операции сложения друг с другом и умножения на число — скаляр. Эти операции подчинены восьми аксиомам. Скаляры могут быть элементами вещественного, комплексного или любого другого поля чисел. Частным случаем подобного пространства является обычное трёхмерное евклидово пространство, векторы которого используются, к примеру, для представления физических сил. При этом вектор как элемент векторного пространства не обязательно должен быть задан в виде направленного отрезка. Обобщение понятия «вектор» до элемента векторного пространства любой природы не только не вызывает смешения терминов, но и позволяет уяснить или даже предвидеть ряд результатов, справедливых для пространств произвольной природы.

Векторные пространства являются предметом изучения линейной алгебры. Одна из главных характеристик векторного пространства — его размерность. Размерность представляет собой максимальное число линейно независимых элементов пространства, то есть, прибегая к грубой геометрической интерпретации, число направлений, которые невозможно выразить друг через друга посредством только операций сложения и умножения на скаляр. Векторное пространство можно наделить дополнительными структурами, например, нормой или скалярным произведением. Подобные пространства естественным образом появляются в математическом анализе, преимущественно в виде бесконечномерных функциональных пространств, где в качестве векторов выступают функции. Многие проблемы анализа требуют выяснить, сходится ли последовательность векторов к данному вектору. Рассмотрение таких вопросов возможно в векторных пространствах с дополнительной структурой, в большинстве случаев — подходящей топологией, что позволяет определить понятия близости и непрерывности. Такие топологические векторные пространства, в частности, банаховы и гильбертовы, допускают более глубокое изучение.

Первые труды, предвосхитившие введение понятия векторного пространства, относятся к XVII веку. Именно тогда своё развитие получили аналитическая геометрия, учения о матрицах, системах линейных уравнений, евклидовых векторах.

Voorbeelden uit tekstcorpus voor Векторное пространство
1. В том числе произведения современных российских композиторов, написанные специально для ансамбля "Студия новой музыки" и ему же посвященные - "Театр" Александра Вустина, "Амулет" Юрия Воронцова, "Векторное пространство" Сергея Павленко, "Ровность ночных пространств" Светланы Румянцевой, "Чевенгур" Владимира Тарнопольского.